
Spreading mechanism of wave Spreading mechanism of wave 
packets in one dimensional packets in one dimensional 

disordered Kleindisordered Klein--Gordon chainsGordon chains
Haris Skokos

Max Planck Institute for the Physics of Complex Systems
Dresden, Germany

E-mail: hskokos@pks.mpg.de
URL: http://www.pks.mpg.de/~hskokos/

Work in collaboration with 
Sergej Flach, Dima Krimer and Stavros Komineas



H. Skokos Chemnitz, 27 May 2009 2

OutlineOutline

• The quartic Klein-Gordon (KG) disordered lattice

• Computational methods

• Three different dynamical behaviors

• Numerical results

• Similarities with the disordered nonlinear 

Schrödinger equation (DNLS)

• Conclusions



H. Skokos Chemnitz, 27 May 2009 3

Interplay of disorder and nonlinearityInterplay of disorder and nonlinearity
Waves in disordered media – Anderson localization
(Anderson Phys. Rev. 1958). Experiments on BEC (Billy 
et al. Nature 2008) 

Waves in nonlinear disordered media – localization or 
delocalization?
Theoretical and/or numerical studies (Shepelyansky
PRL 1993, Molina Phys. Rev. B 1998, Pikovsky & 
Shepelyansky PRL 2008, Kopidakis et al. PRL 2008)
Experiments: propagation of light in disordered 1d 
waveguide lattices (Lahini et al. PRL 2008)
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The Klein The Klein –– Gordon (KG) modelGordon (KG) model
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Usually N=1000.

Parameters: W and the total energy E.

Linear case (neglecting the term ul
4/4)

Ansatz: ul=Al exp(iωt)
Eigenvalue problem: λAl = εlAl - (Al+1 + Al-1) with

�2
l lλ = Wω -W - 2,    ε = W(ε - 1)

Unitary eigenvectors (normal modes - NMs) Aν,l are ordered according 

to their center-of-norm coordinate: ν ν∑N 2
,ll=1

X = lA

All eigenstates are localized (Anderson localization) having a localization 
length which is bounded from above.
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ScalesScales
, width of the squared frequency spectrum:

Localization volume of eigenstate:

Average spacing of squared eigenfrequencies of NMs within the range of a 

localization volume: 

For small values of W we have
Nonlinearity induced squared frequency shift of a single site oscillator

The relation of the two scales                     with the nonlinear 
frequency shift δl determines the packet evolution.
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Distribution characterizationDistribution characterization
We consider normalized energy distributions in normal mode (NM) space

of the νth NM.

, where Aν is the amplitude≡
∑

ν
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with ( )� 2 2 2
ν ν ν ν

1E = A +ω A
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Second moment: ( )∑
N

2
2 ν

ν=1
m = ν - ν z ∑

N

ν
ν = 1

ν = ν zwith

Participation number: 
∑N 2

νν=1

1P =
z

measures the number of stronger excited modes in zν. Single mode P=1, 
Equipartition of energy P=N.
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Integration schemeIntegration scheme
We use a symplectic integration  scheme developed for Hamiltonians of the 
form

H=A+εB 
where A, B are both integrable and ε a parameter. Formally the solution of 
the Hamilton equations of motion for such a system can be written as:

{ } ⇒ ∑
G G G G G G

H

n
sLf n i i

H H
n³0

dX s= H, X = L X  X = L X = e X
ds n!

where     is the full coordinate vector and LH the Poisson operator:
G
X

⎧ ⎫∂ ∂ ∂ ∂⎪ ⎪
⎨ ⎬∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

∑
3

H
j=1 j j j j

H f H fL f = -
p q q p
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Symplectic Integrator SABASymplectic Integrator SABA22CC
The operator        can be approximated by the symplectic integrator 
(Laskar & Robutel, Cel. Mech. Dyn. Astr., 2001):

HsLe

1 εB 1 εB1 A 2 A 1 Ad sL d sLc sL c sL c sL
2SABA = e  e  e  e  e

with .1 2 1
1 3 3 1c = - ,  c = ,  d =
2 6 3 2

The integrator has only small positive steps and its error is of order 
O(s4ε+s2ε2).
In the case where A is quadratic in the momenta and B depends only on 
the positions the method can be improved by introducing a corrector C, 
having a small negative step:

{ }{ }
3 2

A,B ,B
c-s ε L
2C = e

with
Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its
error is of order O(s4ε+s4ε2).

2 - 3c = .
24
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Symplectic Integrator SABASymplectic Integrator SABA22CC
We apply the SABAC2 integrator scheme to the KG Hamiltonian by using 
the splitting:

with a corrector term which corresponds to the Hamiltonian function:
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slope 1/3

slope 1/6

E = 0.05, 0.4, 1.5 - W = 4. Single site excitations
Regime I: Small values of nonlinearity.                    
frequency shift is less than the average spacing of 
interacting modes. Localization as a transient (like 
in the linear case), with subsequent subdiffusion.

Regime II: Intermediate values of nonlinearity. 
resonance overlap may happen 

immediately. Immediate subdiffusion (Molina 
Phys. Rev. B 1998, Pikovsky & Shepelyansky PRL 
2008).

Regime III: Big nonlinearities. δl > ΔK frequency 
shift exceeds the spectrum width. Some 
frequencies of NMs are tuned out of resonances 
with the NM spectrum, leading to selftrapping, 
while a small part of the wave packet subdiffuses
(Kopidakis et al. PRL 2008).

Subdiffusion:
Assuming that the spreading is due to heating of 
the cold exterior, induced by the chaoticity of the 
wave packet, we theoretically predict α=1/3.

2
lδ < Δω

2
l KΔω < δ < Δ

∼ ∼a a/2
2m t ,   P t
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Different spreading regimesDifferent spreading regimes
Second moment m2

Participation number P

The fraction of the 
wave packet that 
spreads decreases 
with increasing 
nonlinearity. 

The detrapping
time increases with 
increasing W.
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W=4, E=0.05
W=4, E=0.4
W=4, E=1.5
W=4, E=10
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W=4, E=0.05 W=6, E=0.05 W=12, E=0.05
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W=4, E=0.4 W=16, E=0.4 W=18, E=0.4
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W=6, E=1.5W=4, E=1.5 W=15, E=1.5
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AccuracyAccuracy
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AccuracyAccuracy
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Relation of regimes I and IIRelation of regimes I and II
We start a single site excitation in the intermediate regime II, measure the 
distribution at some time td, and relaunch the distribution as an initial 
condition at time t=0.

slope 1/3

1/3
2 dm (t) = M(t + t )

Detrapping time τd ≈ td
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DetrappingDetrapping
Nonlocal excitations of the KG chain 
corresponding to initial 
homogeneous distributions of energy 
E=0.4 (regime II of single site 
excitation) over L neighboring sites.
Assuming that m2~t1/3 and that 
spreading is due to some diffusion 
process we conclude for the diffusion 
rate D that

D=τd
-1~n4

where n is the average energy 
density of the excited NMs, i.e.

L~n-1.
Thus we expect:

τd~L4

slope 4

α = 0.303
τd=1052
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The discrete nonlinear SchrThe discrete nonlinear Schröödinger dinger 
(DNLS) equation(DNLS) equation

We also consider the system:

( )∑
N 22 4 * *

D l l l l+1 l l+1 l
l=1

βH = ε ψ + ψ - ψ ψ +ψ ψ
2

 ⎡ ⎤−⎢ ⎥⎣ ⎦
where   and  chosen  uniformly from   is the 

nonlinear parameter.

l W Wε ,
2 2

β

The parameters of the KG and the DNLS models was chosen so that the 
linear parts of both Hamiltonians would correspond to the same 
eigenvalue problem. 

Conserved quantities: The energy and the norm of the wave packet.
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Similar behavior of DNLSSimilar behavior of DNLS

Single site excitations

Regimes I, II, III

In regime II we 
averaged the 
measured exponent α
over 20 realizations:

α=0.33±0.05 (KG)
α=0.33±0.02 (DLNS)

DNLS KG

slope 1/3 slope 1/3

slope 1/6 slope 1/6
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Similar behavior of DNLSSimilar behavior of DNLS

Single mode excitations

Regimes I, II, III

DNLS KG

slope 1/3
slope 1/3

slope 1/6

slope 1/6
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Evolution of the second momentEvolution of the second moment
We use the DNLS model for theoretical considerations. 
Equations of motion in normal mode space:

∑�
1 2 3 1 2 3

1 2 3

*
μ μ μ ν,ν ,ν ,ν ν ν ν

ν ,ν ,ν
i = λ + β Iϕ ϕ ϕ ϕ ϕ

with the overlap integral: .∑1 2 3 1 2 3ν,ν ,ν ,ν v,l v ,l v ,l v ,l
l

I = A A A A

Assume that at some time t the wave packet contains             modes
and each mode on average has a norm
Then for the second moment we have:

ν1/n >> P
2

ν n << 1.ϕ ∼
.2

2m = Dt 1/n∼
The heating of an exterior mode φμ should evolve as:

δ′ ′=where� ∼ 3/2
μ μ μi λ + Fβn f(t)      f(t)f(t ) (t - t )ϕ ϕ

with F being the fraction of resonant modes inside the packet, and φμ
being a mode at the cold exterior. Then ∼

2 2 2 3
μ F β n t.ϕ
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DephasingDephasing

⇒∼ ∼ ∼2 2 1/2
2m1 β tD n

T
We test this prediction by additionally dephasing the normal modes:

Let us assume that all modes in the packet are chaotic, i.e. F=1.
The momentary diffusion rate of packet equals the inverse time the 
exterior mode needs to heat up to the packet level:

DNLS 
W=4, β=3
W=7, β=4
W=10, β=6

KG 
W=10, E=0.25
W=7, E=0.3
W=4, E=0.4

slope 1/3

slope1/2

slope 1/3

slope1/2



H. Skokos Chemnitz, 27 May 2009 25

Evolution of the second momentEvolution of the second moment

So we get:

Thus not all modes in the wave packet evolve chaotically.

We numerically estimated the probability F for a mode, which is excited 
to a norm n (the average norm density in the packet), to be resonant with 
at least one other mode and found: 

∼F βn

⇒∼ ∼ ∼4 4 1/3
2

1D β n m t
T
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ConclusionsConclusions
• Chart of different dynamical behaviors:

Weak nonlinearity: Anderson localization on finite times. After some 
detrapping time the wave packet delocalizes (Regime I)
Intermediate nonlinearity: wave packet delocalizes without transients
(Regime II) 
Strong nonlinearity: partial localization due to selftrapping, but a 
(small) part of the wave packet delocalizes (Regime III)

• Subdiffusive spreading induced by the chaoticity of the wave packet
• Second moment of wave packet ~  tα with α=1/3
• Spreading is universal due to nonintegrability and the exponent α does not 

depend on strength of nonlinearity and disorder
• Conjecture: Anderson localization is eventually destroyed by the slightest 

amount of nonlinearity?
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